An engineered food-grade Lactococcus lactis strain for production and delivery of heat-labile enterotoxin B subunit to mucosal sites
نویسندگان
چکیده
BACKGROUND Recent researches have been focusing on mucosal immune adjuvants, which play the key roles in mucosal immunization and have become the limitation for non-injected vaccine development. Escherichia coli heat-labile enterotoxin B subunit (LTB) was regarded as a promising mucosal adjuvant for its nontoxicity and potent activity. LTB preparation issues have always been recurring, in part owing to that the recombinant LTB expressed by E. coli does not act as its native form. RESULTS We constructed an engineered Lactococcus lactis strain using a food-grade expression system. The LTB secreted by the engineered strain was detected in the culture supernatant, constituting 10.3% of the supernatant proteins, and recognized by mouse anti-LTB antibodies. The engineered strain, co-administered orally to SPF BALB/c mice with a H. pylori vaccine candidate expressing Lpp20 antigen, could significantly enhance the Lpp20-induced mucosal SIgA antibody responses against H. pylori. CONCLUSIONS This is the first report that LTB was efficiently produced and delivered via using a food-grade lactococcal expression system, which offers a novel production and utilization mode of this crucial mucosal adjuvant. The engineered L. lactis strain secreting LTB has considerable potential for oral vaccine formulation owing to its outstanding safety, adjuvant activity and high-level production.
منابع مشابه
Construction and Expression of a Fused Gene for B Subunit of the Heat-Labile and a Truncated Form of the Heat-Stable Enterotoxins in Escherichia coli
Elaboration of different toxins by enterotoxigenic E. coli has been considered as one of the main virulence factors contributing to the manifestation of disease caused by these microorganisms. Various strategies have been employed to raise antibodies against these toxins as a line of defense. In this study, the 3’ terminus of the gene that codes for the binding subunit of the heat-labile entero...
متن کاملOral immunization of mice with attenuated Salmonella enteritidis containing a recombinant plasmid which codes for production of the B subunit of heat-labile Escherichia coli enterotoxin.
We used Salmonella enteritidis serotype dublin strain SL1438, a nonreverting, aromatic-dependent, histidine-requiring mutant, as a recipient for a recombinant plasmid coding for production of the nontoxic B subunit of the heat-labile Escherichia coli enterotoxin. The S. enteritidis derivative EL23 produced heat-labile enterotoxin subunit B that was indistinguishable from heat-labile enterotoxin...
متن کاملLactococcus lactis as a live delivery vector
Mucosal surfaces of the body provide a universal entry portal for all known and emerging infectious pathogenic microbes. Therefore, it seems that special vaccination strategies are needed for vaccines that can hinder the entry capability of pathogenic microbes through the mucosal surfaces. Lactic acid bacteria are widely used in the food industry and are presently applied as delivery vehicles i...
متن کاملDraft Genome Sequence of the Plasmid-Free Lactococcus lactis subsp. lactis Strain LMG 19460
We report here the draft genome sequence of the plasmid-free Lactococcus lactis subsp. lactis strain LMG 19460. This strain has potential application for a cost-effective production of food-grade plasmid DNA to use in DNA vaccines, produce recombinant proteins, and be used as a mucosal delivery vehicle of therapeutic molecules.
متن کاملExpression of Brucella abortus Omp25 Protein in Lactococcus lactis Probiotic Bacteria
Background and purpose: The sequence of Omp25 is conserved in all Brucella species. The high antigenicity of the product of this gene stimulates the host’s immune system. Using engineered probiotic bacteria is an appropriate method for vaccine transport. The aim of this study was to express the Omp25 of the Brucella abortus pathogenic bacterium in Lactococcus lactis probiotic bacterium. Materi...
متن کامل